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Acoustical Klein-Gordon Equation: A Time-Independent Perturbation Analysis
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The perturbation analysis of an ideal acoustical duct was first made by Rayleigh in 1878 and the result
has since stood in the literature. However, the analysis is based on the assumption of potential and
kinetic energy densities that remain constant as a change in cross section occurs, whereas, in fact, they
may fluctuate significantly in comparison to the slowly varying ‘‘wave function,’’ ��x; t�, of the
acoustical Klein-Gordon equation. The square of the time-independent eigenfunction,  2�x�, is directly
proportional to the potential energy per unit length of fluid, and it is shown that it is precisely the
perturbation in potential energy that defines correctly the eigenvalue shifts.
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Introduction.—The effects of a small perturbation,
�S�x�, on the eigenvalues of a pipe of otherwise uniform
cross section, S0, were first examined by Rayleigh [1] in
1878, and the result has since stood in the literature. For a
pipe of nominal length l closed at the input, x � 0, and
open at x � l, for example, the effective end correction at
the nth mode, �ln, can be written as

�ln �
Z l

0
cos

�
�2n� 1�	x

l

�
�S�x�
S0

dx;

n � 1; 2; 3; . . . ;
(1)

so that a constriction at a pressure antinode raises a
resonance, and an expansion lowers it, the converse hold-
ing at a node.

However, such analyses (see also Chiba and Katiyama
[2], Schroeder [3], Fant [4], and Stevens [5]) are based on
the assumption of a fluid displacement and potential and
kinetic energy densities that remain constant as the
change in cross section occurs, when in fact they may
fluctuate significantly. Now, by applying the methods of
wave mechanics to the analysis of acoustic perturbations
for the first time, it can be shown that it is precisely the
change in potential energy that defines correctly the
eigenvalue shifts.

Theory.—It was Salmon [6] who first noted that, for a
progressive plane wave in an ideal fluid, the excess pres-
sure, p0�x; t�, and area function, S�x�, of the Webster
equation [7], must together obey the principle of conser-
vation of energy such that, averaged over a period, �,

hp02�x; t�i�S�x� � const: (2)

Whereas the excess pressure undergoes large fluctuations
with change in cross section, Eq. (2) suggests the defini-
tion of a slowly varying ‘‘acoustical wave function,’’
��x; t�, as
0031-9007=04=93(5)=054301(4)$22.50 
��x; t� � p0�x; t��S�x�	1=2; (3)

where j��x; t�j2 is directly proportional to the potential
energy per unit length of fluid. Substitutions within the
Webster equation then result in the reduced [6,8] or
‘‘Klein-Gordon’’ [9,10] form
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�
; (4)

where c is the speed of sound in the ambient medium. The
‘‘acoustical potential function,’’ U�x�, is defined as

U�x� �
d2�S�x�	1=2=dx2

�S�x�	1=2
; (5)

and previous authors have noted that the time-
independent equation,

d2 �x�

dx2
� �k2 �U�x�	 �x� � 0; (6)

for k the free space wave number, is analogous to the
steady-state Schrödinger equation. Setting k̂ �
�k2 �U�x�	1=2, then for dk̂=dx� k̂, Eq. (6) has eigen-
function solutions,  �x�, in terms of a dispersive wave
number, k̂, namely,

 �x� � Ae�ik̂x � Beik̂x (7)

[10]. Such dispersive solutions elucidate significant var-
iations in phase velocity from predictable phenomena,
and previous work [9] has considered in detail those due
to piecewise constant potential functions, for which
U�x� � U0. The case U0 > 0 describes the acoustical
barrier, corresponding to a region of positive curvature,
whereas that of U0 < 0 describes the acoustical well,
corresponding to a negative curvature.

Perturbation theory: constant or slowly varying per-
turbation.—Consider an ideal uniform duct closed at the
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input, x � 0, and terminated at x � l in a lossless radia-
tion impedance, Zrad � 0. Let us assume a constant,
perturbing potential function, U�x� � U0, 0< x< l, cor-
responding to the imposition of a small ‘‘scaled curva-
ture’’ on the uniform bore, according to (5) [9]. The
dispersion defines corrected eigenfunctions,  cn�x�, as

 cn�x� � An cos�k̂nx�; (8)

and for nominal eigenvalues, kn � �2n� 1�	=�2l�, deter-
mines corrected eigenvalues, kcn, as

kcn �
��
�2n� 1�	

2l

�
2
�U0

�
1=2
; n � 1; 2; 3; . . . :

(9)

It can immediately be seen that a wave-mechanical bar-
rier perturbation will raise an eigenvalue, a well lower it,
and that the percentage shifts are larger at low frequen-
cies, for which k2n � U0.

The ‘‘conserved’’ wave-mechanical formalism also
allows an insightful application of Ehrenfest’s theorem
[3,11] to the calculation of resonance shifts.

Defining the perturbation as �kn, where �kn � k̂n �
kn, the eigenfunctions (8) may be rearranged as

 cn�x� � An cosf�kn � �kn	xg: (10)

For small �knx, the corrected total potential energy, Ecpn,
may be expanded to first order as

Ecpn �
A2
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(11)

where

�n�x� � 2�knx sin
�
�2n� 1�	x

l

�
; (12)

where �0 is the equilibrium density of air and cos��2n�
1�	x=l	 is proportional to the radiation pressure, Pn�x�,
which is the force exerted by the standing wave per unit
cross-sectional area [3].

Maintaining the assumption of a standing wave so that,
for the total kinetic energy, Ekn, then Ekn � Epn, an
expression for the first-order perturbation, �En, to the
total energy of the nth eigenfunction is found simply as

�En � �
A2
n

2�0c
2

Z l

0
�n�x�dx: (13)

Now applying Ehrenfest’s theorem for a small adia-
batic perturbation of an undamped linear oscillator,
which states that the relative shift in frequency of the
oscillator is equal to the relative shift in total energy, that
is

�Fn
Fn

�
�En
En

; (14)
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the expression for the first-order shift in an eigenfre-
quency (see also [5]) is found to be

�Fn
Fn

� �
1

l

Z l

0
�n�x�dx; (15)

leading immediately to the result

�Fn
Fn

� �
�kn
kn

: (16)

Since �kn is positive for propagation above a well but
negative above a barrier, it is evident (i), from (11), that
the perturbation term, �n�x�, may be in or out of phase
with the radiation pressure, thus tending to strengthen or
weaken (the amplitude of) the resonance, respectively;
and (ii), from (12) and (15), that a perturbing potential
function will tend to raise, lower, or have no effect on an
eigenvalue, depending on the interaction of the dispersion
with the phase of the sinusoidal term. It follows that
constructive perturbations and potential-energy raising
will be found for a barrier in the eighth of a period
following an antinode, or a well in the eighth preceding
it. Constructive perturbations and potential-energy low-
ering will be found for a well in the eighth of a period
preceding a node, or for a barrier in the eighth following
it. Such phase-sensitive effects are somewhat in analogy
with others noted by Rayleigh, albeit regarding the trans-
mission of heat.

These predictions may be validated by reference to the
numerical example of a duct of length l � 17:5 cm, for
which the nominal ‘‘quarter-wavelength’’ eigenvalues
correspond to frequencies, Fn, of 500, 1500, 2500,. . .,
Hz. Setting a small, constant, perturbation j�knj �
1 m�1 entails jU0j � 20 m�2 at the first eigenfunction.
For U0 � 20 m�2, Eq. (9) yields exact shifts of �58:6,
�20:6, and �12:4 Hz at the first three eigenvalues, re-
spectively, whereas the first-order perturbation theory
(16) predicts shifts of �66:5, �20:8, and �12:4 Hz. The
agreement is around 86% at the first eigenfunction, rising
above 99% as the Ehrenfest and trigonometric approx-
imations become more appropriate.

For a well, setting a perturbationU0 � �20 m�2 leads,
by Eq. (9), to exact shifts of �66:5, �20:8, and �12:4 Hz,
respectively, whereas the Ehrenfest theorem (16) predicts
shifts of �58:6, �20:6, and �12:4 Hz. The agreement is
88% at the first eigenfunction, again rising with
frequency.

Piecewise-constant perturbation.—Consider a narrow,
rectangular, potential function barrier located at variable
position, x, within the duct, of approximately Dirac form,
��x�. Although the potential-function perturbation is dis-
continuous and strictly localized, the effects on the area
function are long range and, by Eq. (5), it remains con-
tinuous throughout [9]. In this case, due to the disconti-
nuities in U�x�, the methods of the previous section
cannot be used to predict the resonance shifts. However,
054301-2
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FIG. 1. Frequency shifts, �Fn, due to a barrier of form ��x�:
n � 1 (�); n � 2 ( � ); n � 3 (�).
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the wave-mechanical Green’s function (impulse response)
solution [9] at a high-impedance source, Gf�0j0j!�, is
directly proportional to the input impedance, Z0, and is
found to be

Gf�0j0j!� �
�0c

�S�0�	1=2
1� R�x;!�
1� R�x;!�

; (17)

where ! � ck and R�x;!� is the reflection coefficient due
to both the ideal termination and barrier. Equation (17)
can thus be used to calculate the resonance shifts as a
function of perturbation position. Figure 1 illustrates the
effect on the nominal resonances, kn, of moving the
barrier in steps of 5 mm along the duct. The results
were obtained at a resolution of 1 Hz, accounting for
the slight lack of smoothness in the numerical solutions.
The cyclic variations in frequency shift identically follow
the standing wave patterns—in fact, Eq. (17) can be
fitted by a term of type coth�kn�x� l�	—with a perturb-
ing barrier at an antinode producing the maximal shift,
and one at a node producing no shift. Furthermore, at x �
l=2, halfway between node and antinode for all eigen-
functions, the entire eigenvalue spectrum is shifted to-
gether by �50% of the maxima. Near the common
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FIG. 2. Compound, symmetric, potential function.
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antinode, the absolute frequency shift due to any given
perturbation falls with increasing eigenfunction order,
but this trend is reversed towards the common node.
Nevertheless, the percentage shift is always greater for
the lower eigenfunctions, as expected.

Compound perturbations.—In this section, it will be
shown that an accurate account of the effect of localized
pipe expansions and constrictions on resonance involves
the analysis of both positive and negative wall curvatures
and elucidates perturbation phenomena specific to ‘‘com-
pound’’ sequences of barriers and wells.

Consider a compound, symmetric, potential function
configuration consisting of two 1 mm wide wells sepa-
rated by 5 mm from a 6 mm wide barrier, jU0j �
105 m�2, as illustrated in Fig. 2. For an initially uniform
duct and setting S�0� � 5 cm2, the configuration maps to
the localized constrictions of Fig. 3, approximating a
discontinuous change in area function, �S�x�, of around
�4:5 cm2 and reducing the cross section to around the
bottom limit for ideal and adiabatic propagation [9]. As
noted in the previous section, true discontinuities of the
type assumed by Rayleigh cannot be treated within the
Klein-Gordon framework since, from Eq. (5), the area
function must be everywhere differentiable. Figure 4 il-
lustrates the input impedances [cf. (17)] corresponding to
the pipe constrictions of Fig. 3. For a constriction as near
as possible to the common antinode at x � 0, the fre-
quency shifts are found to be �30 Hz (6%), �76 Hz
(5%), and �36 Hz (1%) at F1, F2, and F3, respectively.
Near the common node, however, for an otherwise-
identical potential function, the shifts are found to be
�109 Hz (22%), �214 Hz (14%), and �203 Hz (8%).
Just anterior to the midpoint of the duct, furthermore,
shifts of �70 Hz (14%), �24 Hz (2%), and �400 Hz
(16%) have been found, now emphasizing the tuning of
the third resonance. A finite difference solution of Eq. (4)
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FIG. 3. Pipe constrictions corresponding to the potential
function configuration of Fig. 2: localized at back of duct (solid
line); near midpoint (dash-dotted line) (a � 94, b � 95, c �
100, d � 106, e � 111, and f � 112 mm); and at front of duct
(dotted line).
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FIG. 4. Input impedance, Z0, due to compound potential
function corresponding to Figs. 2 and 3: at back (solid line),
near midpoint (dash-dotted line), and at front of duct (dotted
line).
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confirmed these analytic results to better than 1%
accuracy.

In light of the previous discussion, it is evident that the
frequency shifts reflect the weighting of the potential
function according to nominal standing wave pattern:
Fig. 1 shows that there is a relatively broad region near
the common antinode in which all sections of the com-
pound potential function of Fig. 2 will be weighted
equally but that, near the common node, it will be
weighted more heavily towards the well on the antinode
side. Thus, the net effect at an antinode is that of a barrier,
and the frequency is raised; the net effect at a node is that
of a well and a lowering of frequency. Near the duct
midpoint, the weighing effects of the standing wave
become more complex and depend on the width of the
compound potential in relation to a quarter wavelength:
for the third resonance, for example, centering just be-
yond the midpoint shifts the barrier section onto a node,
isolating the wells and yielding a large negative frequency
shift.

Recalling that the Rayleigh theory predicts equal but
opposite effects at node and antinode, it is interesting to
compare these analytic and finite difference results with
those of the standard method, obtained by numerical
solution of Eq. (1) for the three area functions of Fig. 3.
For a constriction near the common antinode, the fre-
quency shifts yielded by the standard method were found
to be �25 Hz (5%), �66 Hz (4%), and �80 Hz (3%),
respectively, in agreement to better than 2% with the
wave-mechanical results. Near the duct midpoint, the
standard method predicts shifts of �10 Hz (2%),
�51 Hz (3%), and �145 Hz (6%), an underestimation
of 12% in the first eigenvalue shift. Near the common
node, where the theoretical predictions most strongly
054301-4
diverge, the standard shifts are found to be �31 Hz
(6%), �81 Hz (5%), and �99 Hz (4%), and the under-
estimation in the first eigenvalue shift is 16%.

Conclusions.—In contrast to classical assumptions, it
has been shown that it is precisely the small perturbations
in potential energy, through dispersions due to the poten-
tial function, U�x�, that define correctly the eigenvalue
shifts due to a change in the cross section of an acoustical
duct. A Green’s function analysis of piecewise-constant
potential functions has shown that such a perturbation
exactly at the nodes of the nominal eigenfunctions of a
uniform pipe produces no shift in the respective eigen-
values. In the case of simple piecewise-constant poten-
tials, maximal eigenvalue shifts are found at the
antinodes. For a compound potential function, although
there is no perturbation exactly at a node, shifts can be
obtained near the node that differ in sign from those
produced near an antinode, due to the weighting of the
separate curvatures by the standing wave pattern. Just
beyond the midpoint of the duct, compound potential
functions can be used to produce large shifts in the first
and third resonances, while leaving the second largely
unperturbed. The theory presented here defines an accu-
rate method of resonance analysis, with applications in
engineering and musical acoustics, and the compact pa-
rametrization of speech.
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