Posted by Wayne Parham [ 67.66.228.22 ] on November 16, 2004 at 01:54:33:
Recent discussions about cooling vents and ducting techniques have been difficult without illustrations to accompany them. So I've made a few simple drawings to describe the techniques I'm planning to explore for cooling high-power loudspeakers.
This was prompted by the B12 subwoofer project, and is an evolution of that effort. What started as a requisition for a flux stabilized subwoofer with improved performance has become a system design. The B12 was to use a shorting ring to reduce harmonic distortion by providing a symmetrical magnetic field even in the presence of voice coil current. This could be used in new cabinet designs or to retrofit existing ones. The effort has changed to a basshorn design that uses a push-pull plenum to provide symmetry. This will be used in two new horn designs, the 12π and 15π basshorns.
The main feature of these basshorns is the push-pull plenum to cancel harmonics and reduce distortion. But during the B12 effort, it was clear that many people were interested in improved power handling too. This, combined with the fact that one of the two drivers in the push-pull plenum will have its cooling vent exposed to the horn throat made it attractive to find alternate methods for cooling. It is desirable to duct the cooling vent somewhere both for enhanced power handling and for the reduction of noise from vent turbulence.
Some have been unclear as to what the cooling vents would do, and what impact could be expected from them. Some have even thought that the reduction of distortion sought was somehow related to relieving pressure from behind the vent. So I thought it would be good to clarify the goals of the effort to improve the cooling mechanism.
First, it should be understood that the push-pull plenum and the cooling vent are two separate issues. The push-pull plenum is what is primarily responsible for reducing distortion. An explanation for how this happens is given here.
Second, it should be understood that improvements to the cooling vent are not intended to improve distortion or loading. They are done only to improve heat transfer, and so increase power handling ability. The possibility of noises from vent turbulence is also addressed, by routing the vent to a place where it isn't audible.
Third, the design is not technically difficult, but it is new. Because of this, there are some tests that are required to know what is necessary. I am confident that it can be made to work, and I am writing this to show you why I'm confident in the idea. But the exact implementation will still take some testing to know what is necessary and what's best.
In particular, there are three implementation possibilities that can be used. Each of them is more complex than the one that precedes it. But even the most complex arrangement is no more difficult than putting a heater core in a car. It is an exceedingly simple system. So even the most complex arrangement is not difficult to implement at all.
The thing that has hung up some of the people who have examined this is that the cooling vent of the loudspeaker leaks to the rear side of the cone, under the spider. This is of practically no consequence when used in bass-reflex loudspeaker systems or horns with open backs or large rear chambers. But it may be an issue in sealed boxes and some horns. If it is a problem, then the cooling vents can be ducted to an intercooler, so that the entire cooling system is sealed.
Lets look at the systems, one by one:
First, the loudspeaker without a vent:
This is a cutaway view of a loudspeaker without a cooling vent. Heat builds up in the voice coil gap and is only dissipated by heat transfer to metal surrounding the gap in the front plate and the center pole. Pressure behind the dust cap increases the stiffness of the suspension.
So an alternative is considered: Vent to the outside of the cabinet.
[ PiSpeakers Forum ] [ Help ]